Mechanism of Catch Force: Tethering of Thick and Thin Filaments by Twitchin
نویسندگان
چکیده
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini of the minititin twitchin (approximately 526 kDa). Some catch force maintenance car also occur together with cycling myosin crossbridges at submaximal calcium concentrations, but not when the muscle is maximally activated. Additionally, the link responsible for catch can adjust during shortening of submaximally activated muscles and maintain catch force at the new shorter length. Twitchin binds to both thick and thin filaments, and the thin filament binding shown by both the N- and Cterminal portions of twitchin is decreased by phosphorylation of the sites that regulate catch. The data suggest that the twitchin molecule itself is the catch force beanng tether between thick and thin filaments. We present a model for the regulation of catch in which the twitchin tether can be displaced from thin filaments by both (a) the phosphorylation of twitchin and (b) the attachment of high force myosin crossbridges.
منابع مشابه
The N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance.
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting th...
متن کاملInvertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show sma...
متن کاملUnphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch.
Molluscan smooth muscle can maintain tension over extended periods with little energy expenditure, a process termed catch. Catch is thought to be regulated by phosphorylation of a thick filament protein, twitchin, and involves two phosphorylation sites, D1 and D2, close to the N and C termini, respectively. This study was initiated to investigate the role of the D2 site and its phosphorylation ...
متن کاملTwitchin from molluscan catch muscle: primary structure and relationship between site-specific phosphorylation and mechanical function.
The phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) w...
متن کاملCatch Muscle Myorod Modulates ATPase Activity of Myosin in a Phosphorylation-Dependent Way
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010